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Delayed puberty is a common reason of pediatric endocrinological consultation. It

is often a self-limited (or constitutional) condition with a strong familial basis. The

type of inheritance is variable but most commonly autosomal dominant. Despite

this strong genetic determinant, mutations in genes implicated in the regulation of

hypothalamic–pituitary–gonadal axis have rarely been identified in cases of self-limited

delayed puberty and often in relatives of patients with congenital hypogonadotropic

hypogonadism (i.e., FGFR1 and GNRHR genes). However, recently, next-generation

sequencing analysis has led to the discovery of new genes (i.e., IGSF10, HS6ST1, FTO,

and EAP1) that are implicated in determining isolated self-limited delayed puberty in

some families. Despite the heterogeneity of genetic defects resulting in delayed puberty,

genetic testing may become a useful diagnostic tool for the correct classification and

management of patients with delayed puberty. This article will discuss the benefits and

the limitations of genetic testing execution in cases of delayed puberty.
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DEFINITION

Delayed puberty (DP) is defined as the lack of pubertal signs, namely, thelarche in females and
increase of testicular volume (≥4ml) in males, at an age above 2–2.5 standard deviation of the
population mean classically set at 13 years for girls and 14 years for males or a stunted pubertal
progression diverging from puberty nomograms (1). DP is a frequent condition, affecting 2% of
subjects in pubertal age.

ETIOLOGY AND EPIDEMIOLOGY

In line with two large clinical reports on this topic (2, 3), DP can result from different conditions.
Constitutional delay of growth and puberty (CDGP) is the most frequent cause (4), characterized
by growth retardation in childhood and delayed puberty in adolescence, also termed as self-limited
DP, which generally spontaneously reaches completion by 18 years of age. Self-limited DP is found
in 73% of boys and in 43% of girls with pubertal delay (2, 3).

Hypergonadotropic hypogonadism is an expression of gonadal failure. It affects especially
females where it represents 21% of DP cases, with Turner syndrome in 27% of the affected
girls (2, 3).
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Another condition of DP is central hypogonadotropic
hypogonadism, which can be distinguished in functional
hypogonadism in case of chronic disease and nutritional
or stressing factors able to inhibit the activation of the
hypothalamic–pituitary–gonadal (HPG) axis, corresponding
to approximately 16–20% of DP (2, 3), and permanent
hypogonadism, affecting 15% of females and 8% of males.
Permanent hypogonadism can be congenital (CHH), both
isolated and syndromic, or acquired. In particular, CHH offers
a wide spectrum of clinical manifestations ranging from severe
forms with clinical signs of neonatal gonadotropin deficiency
through milder forms of pubertal development arrest to
reversible forms of hypogonadism. CHH accounts for 4% of boys
and 5.7% for girls with DP (2, 3).

The clinical challenge is the differentiation between self-
limited DP and other forms of hypogonadism, especially
hypogonadotropic hypogonadism. This review aims to
summarize the knowledge about the genetic etiology of
both CHH and self-limited DP to suggest a possible role for
genetic testing in clinical setting.

DIFFERENTIAL DIAGNOSIS

In clinical setting, it is useful to identify “red flags” in medical
history or clinical examination that suggest the possible etiology
of DP (5). A family history of delayed puberty with an autosomal
dominant inheritance emerging from pedigree could indicate
both self-limited DP and CHH.

In male newborns, the finding of micropenis and
cryptorchidism is crucial for the suspicion of permanent
hypogonadism. Indeed in Kallmann syndrome (KS), micropenis
was described in 20 to 40% (6–8) of newborns, while
cryptorchidism affected 30 to 50% of CHH males (9, 10).
Minipuberty offers an important window for evaluation of
the HPG axis. In this phase, hormonal assessment, including
gonadotropins and sex steroids, can allow to identify CHH based
on the lack of physiological hormonal surge. In females, there
are no equivalent clinical signs for suspicion of CHH. In both
sexes, in the presence of one of the parents with CHH, hormonal
evaluation during minipuberty is recommended and has to
be completed by genetic testing in case of a known mutation
in the affected family member (11). In medical history, it is
important to investigate the signs or symptoms of impaired
thyroid function (hypothyroidism or hyperthyroidism), of
chronic diseases like inflammatory bowel disease or coeliac
disease and to evaluate pathological food dynamics with food
restriction and excessive physical activity suggesting anorexia
nervosa. Moreover, attention should be paid to a chronic use of
corticosteroids and a positive history of hematological diseases
with a chronic transfusion regime determining hemosiderosis.
In patients with a history of chemotherapy or radiation
therapy, it is possible to hypothesize both gonadal failure and
hypogonadotropic hypogonadism. Recent onset of diplopia,
headache, vomiting, and seizures could suggest a brain mass.

Similarly, a detailed clinical exam can reveal important
elements for diagnostic workup. Attention should be given to

the presence of middle line defects or typical facial features,
visual impairment, deafness, bimanual synkinesia, anomalies
of hand or foot, dental or skull dysgenesis or malformations
and complex malformation association suggesting a CHARGE
syndrome. Conversely, anosmia or hyposmia, as evaluated by
olfactometry, offers a strong suspicion of KS.

At initial presentation, a differential diagnosis between self-
limited DP and CHH is difficult because patients have common
clinical and biochemical characteristics. Another important
aspect is the possible reversal of hypogonadism, to date described
in patients carrying variations in nine genes (KAL1, FGFR1,
CHD7, HS6ST1, PROKR2, NSMF, GNRHR, TAC3 and TACR3)
(11), that complicates the differential diagnosis between CHH
and self-limited DP in cases with a mild normosmic phenotype.

GENETICS OF CHH

The current knowledge about pubertal delay pathophysiology is
mainly derived from defects in genes determining CHH. CHH
represents from 24 to 85% of permanent hypogonadotropic
hypogonadism and includes two subgroups of patients:
normosmic subjects (nCHH) and subjects with anosmia and
other clinical signs of KS like deafness, cleft lip/palate, renal
anomalies and synkinesis, representing 50% of cases of CHH.
Anosmia reflects the involvement of genes that play a role in the
development of GnRH neurons and olfactory bulbs, while in
nCHH mutations affect the genes involved in GnRH secretion
or function. Nevertheless, the usefulness of this dichotomous
distinction in targeting genetic testing is limited by the clinical
overlap of the two conditions (12).

In CHH, a genetic cause is found in about 50% of patients
(13, 14). To date, mutations in more than 30 genes have been
identified as a genetic cause of CHH, both nCHH and KS,
with some rare loci involved in complex syndromes (11, 15–
18). As for several other diseases, the application of next-
generation sequencing (NGS) technology to CHH diagnosis has
been responsible for the identification of an increasing number
of genes involved in its etiology.

In fact, the genetic heterogeneity and the overlapping
phenotypes make CHH the classical disease in which new next-
generation sequencing technology finds application.

The inheritance pattern in CHH includes different modes,
namely, autosomal dominant, autosomal recessive and X-linked.
In addition, de novo mutations have been reported, whereas
for some genes incomplete penetrance and variable clinical
expressivity are frequent.

AUTOSOMAL RECESSIVE FORMS

Among the autosomal recessive forms, the most frequent
findings are biallelic mutations in three genes:GNRHR, for which
more than 60 families have been described (11, 19–24), KISS1R,
with 27 families identified (19, 25, 26), and TACR3, found in
20 families (27–31). In these cases, the phenotype is a classical
nCHH, without any non-reproductive signs of pathology (16).
Interestingly, forGNRHR variations, that are responsible of about
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40–50% of inherited nCHH cases (23), there is a wide phenotypic
variability even in the same family with the same genetic variant
(32). Another important aspect is the possible reversal of TACR3
and TAC3 mutation-related hypogonadism. In these cases, the
differential diagnosis between CHH and self-limited DP can be
supported by the possible presence of micropenis that suggests
TACR3 mutation (30). On the other hand, biallelic mutations in
genes encoding for ligands of the above-mentioned receptors, like
GNRH1, KISS1, and TAC3, are a rare cause of nCHH; even rarer
are those in LHB and FSHB (16).

In this group, we find examples of genes involved in the
neuroendocrine regulation of GnRH neurons. GNRHR encodes
for a G-protein-coupled receptor that, through a variation of
intracellular calcium levels, determines the pituitary release of
gonadotropins (33); therefore, GNRHR mutations represent a
paradigm of altered function of GnRH. In addition, KISS1R,
TAC3, and TACR3 encoding for a G-protein-coupled receptor
for Kisspeptin, for neurokinin B and neurokinin receptor,
respectively, are all part of a complex network. In this network,
the KDNY neurons in arcuate nucleus that synthesize kisspeptin,
neurokinin B, and Dynorphin exert a regulatory role on GnRH
neuronal function (17).

X-LINKED FORMS

ANOS1, previously KAL1, located on Xp22.3, encodes for
Anosmin1, an extracellular protein mediating cellular adhesion,
playing a fundamental role in the migration process of olfactory
and GnRH neurons that leads these cells from nasal placode
to the hypothalamus (33). ANOS1 is characterized by an X-
linked recessive pattern of inheritance; mutations or intragenic
microdeletions of this gene are responsible for 10–20% of KS (13).
The penetrance is complete for typical clinical manifestations,
such as CHH and anosmia (34–39). Conversely, other clinical
manifestations like synkinesis, revealed in 75% of patients (34),
and renal agenesis, found in 30% of subjects, display different
expressions in individuals carrying the same variant (35–46). To
date, about 144 families have been described. Among them, an
interesting finding was a female phenotype in 10 subjects, of
whom one case was due to a biallelic ANOS1 mutation (47) and
the remaining nine cases were due to a second variant in another
gene, suggesting a possible oligogenic mechanism.

Among genes with X-linked transmission, defects in DAX1
determine a syndromic association between CHH and congenital
adrenal hypoplasia; although penetrance is near-complete (48,
49), phenotypic variability is seen both in the severity of CHH
(48–52) and in the age at onset of adrenal insufficiency (48–50,
53, 54).

AUTOSOMAL DOMINANT FORMS

Among autosomal dominant forms of CHH, including nCHH
and KS, two genes are the most frequently involved, FGFR1
and CHD7.

FGFR-1 encodes for a tyrosin kinase receptor able to
activate a complex signaling, including also ANOS1 and FGF8,

regulating fundamental developmental processes like neuronal
migration, fate, cell survival and proliferation (33). FGFR1 plays
an important role, with more than 140 mutations described,
generally determining a loss of function with several mechanisms
(nonsense, missense, frameshift, splicing and rarely deletions)
(34, 55, 56). De novo mutations are another relatively frequent
possibility (11, 35). The FGFR1 mutations determining KS are
characterized by incomplete penetrance (11, 57, 58) and variable
clinical expression of the same mutation in the same family,
with patients displaying complete phenotype, only anosmia, or
isolated pubertal delay (57–62). Furthermore, as reported by
various authors, mutations in this gene cause also nCHH (58, 63–
67). Other clinical features of FGFR1 mutations, such as skeletal
anomalies, cleft lip and cleft palate and dental agenesis, are
present with variable frequency (11, 34, 44, 57, 58, 60, 61).

CHD7 gene, located in 8q12.1, is a well-known genetic
cause of CHARGE syndrome, characterized by coloboma, heart
anomalies, choanal atresia, growth and development retardation,
genital and ear anomalies. Subsequently, it was recognized as
a genetic cause of nCHH and KS (68–71). In these cases,
genetic variants consist in missense mutation with a partial
loss of function (70, 71). Furthermore, de novo mutations are
frequently found (69, 70). As in the case of FGFR1 mutations,
there is wide phenotypic variability, ranging from KS through
nCHH to isolated anosmia (70, 71). Other clinical manifestations
associated with CHD7 mutations in patients with CHH are
deafness, anomalies of the outer ear and lip/cleft palate (70–
73). The expression of chromodomain-helicase-DNA-binding
protein 7 (CHD7) in the hypothalamus and in the olfactory
epithelium reflects a possible role in the development of olfactory
bulb and GnRH neurons (33).

Recently, autosomal dominant mutations in SOX10 were
described as a cause of KS (74–79), these patients also presented
neurogenic deafness. The SOX transcription factor family is
involved in the development of a large number of organs, in
particular, SOX10 is expressed in GnRH cell precursors (16).

In this section, PROKR2, a gene that encodes for a G-protein-
coupled receptor, and PROK2, encoding for prokinecitin 2,
a ligand of this receptor, should be mentioned. The ligand
binding to the receptor triggers a signaling cascade with
effects on the development of the olfactory system and the
progenitors of GnRH neurons (33). PROKR2 mutations are
found both in KS and nCHH. This gene is characterized
by autosomal recessive inheritance pattern in 20% of cases;
the remaining cases are due to autosomal dominant or
oligogenic mechanisms with the involvement of other
genes (80–88). Of note is that some PROKR2 rare variants
are present in the general population with a significant
prevalence. Therefore, it is difficult to interpret the genetic
results, also considering the incomplete penetrance, when
analyzing a pedigree. The PROK2 variants instead are rare
and can present with autosomal dominant or recessive pattern
of inheritance.

Another interesting gene is FGF8, which encodes for a ligand
of FGFR1 and therefore taking part in this signaling pathway
(16). Heterozygous mutations were found in KS and nCHH,
also with reported cases of oligogenic inheritance. The clinical
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manifestations include neurosensorial deafness, cleft lip/palate
and camptodactyly (11, 89–91).

OLIGOGENIC INHERITANCE

Recently, a mutation in two or more genes, with an oligogenic
inheritance, was reported in several cases of nCHH and KS. The
first description was in 2006 in a case of KS due to PROKR2
and KAL1 mutations (80). In 2010, Sykiotis et al. (92) analyzed
a large series of CHH patients, finding oligogenic inheritance in
2.5% of the subjects. Later, other groups reported an oligogenic
mechanism in 7% (67) to 15% (12) of subjects with CHH. To
date, at least 16 genes are known to contribute to oligogenicity
(11). The application of next-generation sequencing increases the
chance to find oligogenism in CHH. In some cases, distinction
between oligogenism and the presence of benign variants not
interfering with the phenotype could be challenging (16).

Gene defects underlying CHH concern genes encoding
for proteins involved in different fundamental physiological
mechanisms: development andmigration of GnRH neurons as in
the case of ANOS1, FGFR1, FGF8, CHD7, PROK2, and PROKR2;
the regulation of GnRH secretion as in the case ofKISS1R,TACR3
and TAC3; GnRH action as in the case of GNRHR.

Genetic Analysis in CHH
Until the introduction of NGS, the genetic diagnosis in CHH
was obtained mainly through Sanger sequencing, analyzing gene
exons and exon–intron junctions one by one. This analysis
could now represent an appropriate choice in case of a patient
belonging to a family with a known mutation that completely
explains the observed phenotype, with fast and cost-effective
results. Conversely, in the case of an initial genetic evaluation of
a patient with CHH, given the large number of genes involved
in this condition and the phenotype heterogeneity, Sanger
sequencing could result to be time-consuming and expensive.

The growing diffusion of NGS offers the possibility of
simultaneous analysis of many genes, resulting in a time-sparing
and cost-effective strategy (16).

This approach can expand the phenotype of known
genetic diseases through the genetic diagnosis in patients with
incomplete or atypical clinical manifestations and, conversely, in
the case of whole-exome or whole-genome sequencing, can reveal
new genes that are responsible of a genetic disease.

An important limitation is the enormous mass of data derived
from this type of analysis, in which a careful and adequate choice
of pipelines and bioinformatic filters to improve the detection
rate and the interpretation of results plays a fundamental
role. Beyond these technical aspects, a complete phenotypical
description of the case, with a precise assessment of the familial
pedigree and of the hypothetical mode of transmission is needed
for the attribution of clinical validity to an identified variant (16).

NGS techniques include whole-exome sequencing (WES)
target sequencing (TS) and whole-genome sequencing (WGS).
WES and target-exome sequencing evaluate only exons of all
genes and of a panel of genes selected for their known role
in the disease, respectively, without sequencing intronic and
potential regulatory regions and furthermore with a coverage of

exon-intron junction varying on the basis of technical design
characteristics. The WGS meanwhile consists in sequencing of
the entire genome, including also intronic regions, with the
possibility to find variants in intronic and intergenetic regions.
The cost of this latter technique is still high; furthermore, a
couple of limitations ofWGSmay be the lower depth of sequence
coverage compared to WES and difficult interpretation.

Finally, in a patient with CHH and a complex phenotype
in which a possible genetic explanation could be a contiguous
gene syndrome, array-CGH can be appropriate to exclude
submicroscopic copy number variation (microdeletion and
microduplication) (17).

In line with costs and with potential genetic relevance of
information derived from a genetic analysis in the field of CHH,
considering the known genetic heterogeneity of CHH and the
possibility of oligogenicity,WES or target sequencing (depending
also on local facilities) appears to be the test of choice amongNGS
techniques in clinical settings (16).

However, the next-generation sequencing represents an
advantageous technique, but the interpretation of the results
could be challenging, so a detailed phenotypic characterization
is very important.

Importance of Genetic Diagnosis in CHH
A genetic diagnosis represents the conclusion of the diagnostic
path, with implication on prognosis, in particular in view of
the possibility of reverse, on correct counseling for other family
members and also for the patient’s offspring. Genetic counseling
starts from the evaluation of the mode of inheritance according
to pedigree and gene defect found. The counseling becomes more
complex in case of oligogenism, indeed to establish the role of
each variant requires a deep knowledge of the phenotype related
to the single variant and the availability of informative pedigree
composed by affected and unaffected subjects (16).

Overlapping Etiology Between CHH and
Self-Limited Delayed Puberty
Considering the distribution of puberty timing, self-limited DP
can be assimilated to the extreme upper limit of normality. On the
other hand, the frequent presence of a family history of pubertal
delay induced to suppose a genetic basis for this condition, with
an apparent autosomal dominant inheritance.

A study (93) based on record review and interviews analyzed
the pedigrees of 53 subjects with CDGP and 25 controls, finding
an apparent autosomal dominant pattern of inheritance in the
majority of families.Moreover, they reported an increased risk for
pubertal delay in the relatives of subjects with CDGP (RR 4.8 and
3.2 for first degree and for second degree relatives, respectively)
compared to controls.

The identification of the genetic cause in self-limited DP
offers various pitfalls because DP is a common condition in
non-affected individuals. Therefore, a genetic variant possibly
determining this condition could have a quite relatively high
prevalence in the general population.

Moreover, the presence of pubertal delay in 10% of relatives of
CHH patients (94) and the possibility of a spontaneous reversal
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in 10% of patients with CHH (12) induce to hypothesize a shared
molecular basis in CHH and self-limited DP.

In the general population, the timing of puberty is influenced
by general health, nutritional status and endocrine disruptors
chemicals but is under a strong genetic influence (95–98).
The knowledge about the genetic control of the hypothalamic–
pituitary–gonadal axis derives mainly from studies on subjects
with GnRH deficiency, leading to the discovery of rare variants
underlying CHH. Different studies were conducted to explore the
role of genes causing CHH in determining self-limited DP.

In their work, Zhu et al. (94) examined the hypothesis
of a shared genetic basis between these two conditions using
WES in two different cohorts. They analyzed 15 pedigrees with
an IHH proband carrying a potentially pathogenic variant in
IHH genes (FGF8, FGFR1, GNRH1, HS6ST1, KAL1, KISS1,
KISS1R, NELF, PROK2, PROKR2, TAC3, and TACR3) and family
members both with delayed and with normal puberty. A genetic
variant was found in 53% of relatives with DP and in 12% of
relatives with normal puberty. In the other cohort of 56 DP
subjects with no family history of IHH matched with controls
from ExAC, they found potentially pathogenic variants in IHH
genes in 14.3% of DP subjects and in 5.6% of controls. The
heterozygous potentially pathogenic variants were in GNRHR,
TAC3, TACR3, SEMA3A and IL17RD, the latter with the largest
number of subjects. However, the controls also carried potentially
pathogenic variants. An important observation is that incomplete
penetrance and variable clinical expressivity represent a hurdle
for which genetic testing in differential diagnosis between IHH
and self-limited DP might have limited usefulness.

Also, Cassatella et al. (12) tried to explore the genetic
architecture of CHH and CDGP to find out a shared genetic basis.
This study included 116 CHH probands and 72 CDGP subjects
and controls (from ExAC and CoLaus). Exome sequencing
showed mutations in IHH genes (25 genes including IGSF10)
in 51% of CHH subjects, in 7% of CDGP probands and in
18% of controls. Oligogenic inheritance was found in 15%
of CHH cases and in only 1.4% of CDGP subjects and
2% of controls, confirming its role in CHH. These results
suggest a different genetic architecture of these two conditions;
however, considering the role of genes determining CHH in the
pathophysiology of pubertal failure, it is possible to hypothesize
that, in a small number of individuals with self-limited DP, a
pathogenic mutation in one of these genes could be found.

New Genes Causing Self-Limited Delayed
Puberty
Recently, the application of NGS technology to self-limited DP
revealed genes involved in determining this phenotype and
unraveling interesting scenarios in the genetic control of puberty.

HS6ST1
Howard et al. tried to identify genes that are involved in self-
limited DP in several studies. In one of them (99), the study
population consisted of 492 subjects from the Finnish DP cohort
with a diagnosis of self-limited DP as performed in a specialist
center from 1982 to 2004. WES was performed on 160 subjects,
comprised of 67 probands with DP (57 male and 10 female) from

67 families, 58 affected relatives (36 male and 22 female), and 35
unaffected family members (13 male and 22 female). The results
were filtered, giving priority to genes causing HH (28 genes),
and identified one variant in the HS6ST1 gene. Subsequently,
target exome sequencing was performed in 288 other individuals
from 42 families of the same cohort (178 DP and 110 controls),
confirming one pathogenic variant in HS6ST1 in one family.
This was a heterozygous missense variant (p.Arg375His) defined
as deleterious by five prediction tools and affecting a highly
conserved residue found in a patient with growth delay and with
puberty onset at the age of 14.3 years. Other family members with
DP were the father, paternal uncle and sister. There was no family
history of HH, anosmia was absent in the patient and the relatives
with DP.

The identified variant induced a reduced sulfotransferase
activity in vitro. A murine model was realized. Hs6st1 mRNA
was not expressed in GnRH cells but in regions like the olfactory
bulb, in the pre-optical medial area of the hypothalamus and
in the arcuate nucleus, which is involved in the regulation
of GnRH neurons. The heterozygous murine model allowed
the observation of normal localization and number of GnRH
neurons in the pre-optical medial area and confirmed the delayed
puberty without alteration of body size, testicular structures and
adult fertility.

The role ofHS6ST1 gene in hypogonadotropic hypogonadism
was investigated in a previous study involving 338 patients
with GnRH deficiency (271 males and 67 females), of
which 105 have a positive family history, finding a variant
in seven subjects corresponding to 2% of IHH patients
(100), one homozygous and four heterozygous. In this
work, the inheritance pattern was complex, overcoming a
simple mendelian transmission, with clinical heterogeneity
leading to a hypothesis on the role of epigenetic factors
or additional mutations in other genes to fully explain
the phenotype.

To understand the role of HS6ST1 in self-limited DP, it
is important to consider the biological process of which it
takes part. As suggested by the authors (99), in line with
Hs6st1 expression, the reduced sulfotransferase activity in regions
including kisspeptin neurons and other cells that influence GnRH
function and secretion can impair the overall regulation of
GnRH neurons. Furthermore, Hs6st1 activity is required for the
normal function of Anos1 and Fgfr1 (100). Therefore, the clinical
phenotype of CHH could be due to mutations in the multiple
components of this network. In general, it could be plausible
that for the same gene a mutation in a single allele can cause
self-limited DP. Conversely, a more damaging mutation or the
contemporary effect of another gene can lead to a more severe
phenotype like CHH. Although a potentially pathogenic variant
in HS6ST1 in self-limited DP has been identified, the absence of
mutations in other CHH genes in the analyzed cohort confirms
the different genetic basis of CHH and self-limited DP or suggests
that other genes causing self-limited DP are yet unknown.

IGFS10
This new gene variant was discovered through the application
of WES in a cohort of subjects with self-limited DP in trying
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to explore the genetic basis of this condition. This interesting
work was published by Howard et al. (101), in which a
cohort of 111 individuals from 18 families (76 DP and 35
controls) was analyzed using WES. They identified two N-
terminal variants in IGSF10 (p.Arg156Leu and p.Glu161Lys) in
20 subjects with self-limited DP from six families, with autosomal
dominant mode of inheritance for all except in one patient
that presented DP without mutation. They also identified two
C-terminal variants (p.Glu2264Gly and p.Asp2614Asn) in the
same gene in four other families. In one family, there was an
incomplete penetrance, in another, they supposed a de novo
mutation. All the patients presented a normal growth rate
before puberty and a classical DP with delayed pubertal spurt
and normal (self-reported) olfaction. The IGFS10 gene was not
previously reported as the cause of human pathology. Themurine
model allowed the observation that Igsf10 mRNA is expressed
in the nasal mesenchyme of embryos. Additionally, Igsf10
knockdown disrupts the migration and the neurite elongation
of GnRH3 cells in vivo. The authors investigated the potential
role of IGF10 in subjects with permanent GnRH deficiency,
like in KS, idiopathic hypogonadism and functional HH, like
hypothalamic amenorrhea or its equivalent. They performed
target exome sequencing on 334 adult patients with KS (162
subjects), IHH (158 subjects), hypothalamic amenorrhea or
functional HH (14 subjects). The study described a potentially
pathogenic variant in 10.2% of these subjects: 3 loss-of-function
variants in 5 patients and 13 missense variants in 29 subjects.
Among 14 patients with functional HH, 25% had a personal
history of DP and two patients had a heterozygous loss-
of-function IGFS10 variant with no family history of IHH
or anosmia and with normal brain MRI. In both cases, an
important contemporary environmental factor triggered the
functional HH: secondary amenorrhea caused by excessive
physical exercise and important weight loss due to a subclinical
eating disorder.

This interesting finding suggests a shared etiology between
self-limited DP and some forms of functional HH. The
functional study performed by the authors revealed that
Igsf10 is involved during the early phase of GnRH neuron
migration from the olfactory placode to the hypothalamus
and the pre-optic areas. This process has a precise timing
and is a pre-requisite for the normal development of the
hypothalamic–pituitary–gonadal axis. In case of mutation,
the alteration of the Igsf10 signaling could lead to a
reduced number of GnRH neurons that migrate into the
hypothalamus or to an incorrect timing, determining puberty
onset delay (101).

Considering the role of IGFS10 in the formation of the GnRH
network, it is reasonable to assimilate environmental factors to
a “second hit” acting on the hypothalamus–pituitary–gonadal
axis made more susceptible to functional hypogonadism by
IGSF10 variants.

FTO
Energy homeostasis through the regulation of fat mass and
adipokyne production is supposed to be implicated in pubertal
timing. In a paper published in 2018 (102), Howard et al. found T
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FIGURE 1 | Diagnostic Algorithm for Delayed Puberty. DP, Delayed Puberty; HH, Hypogonadotropic Hypogonadism; CHH, Congenital Hypogonadotropic

Hypogonadism; CPHD, Combined Pituitary Hormone Deficiency; NGS, Next Generation Sequencing.

two rare variants in FTO gene in three out of 67 families with self-
limited DP. FTO gene polymorphisms have been associated both
with obesity and with age at menarche.

Of note is that the patients with FTO rare variants displayed
low body mass index during childhood, suggesting that the
effect of that genetic variants occurred through metabolism
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derangement that in turn can affect puberty onset. The authors
also realized a murine model of a heterozygous state of FTO that
showed delayed puberty (timing of vaginal opening). These two
elements support the role of genes involved in the control of
energy balance as a possible cause of self-limited DP.

EAP1
The same group identified two rare variants in the EAP1 gene
in two families from the same cohort of 67 families with DP
(103). EAP1 contributes to the initiation of female puberty
via transactivation of the GnRH promoter. Eap1 is a nuclear
transcription factor able to act in two modes: trans-activating
the GnRH promoter and by inhibition of the prepoenkephalin
promoter, which normally antagonize the GnRH secretion, thus
determining an increase of GnRH levels that typically occurs at
the start of puberty. Therefore, EAP1 is an important element of
the complex network upstream of GnRHwhich is involved in the
onset of puberty. Mutations in EAP1 could be a plausible cause
of DP, similarly to other genes acting through the alteration of
the GnRH secretion (i.e., KISS1, TAC3 and TACR3). However, no
mutations that cause disorders of puberty have been identified
before of this work. The authors found a rich expression of
Eap1 in the hypothalamus of mouse in peripubertal phase and
for EAP1 mutant proteins showed altered levels and impaired
GnRH promoter activity. No phenotypic peculiarity was present
in patients with EAP variants except for self-limited DP and
delayed bone age.

Table 1 summarizes the phenotypic characteristics of patients
with a monogenic cause of self-limited DP.

These recent findings suggest that genes determining self-
limited delayed puberty could be involved in the overabundant
mechanisms that control puberty onset (e.g., modulation
of GnRH function and secretion, numerousness of neurons
migrating from the olfactory placode to the hypothalamus and
the pre-optic areas or energy balance) in spite of genes implicated
in CHH that directly affect GnRH neuronsmigration or function.
However, more studies are needed to unveil if this suggestion
is correct.

CONCLUSIONS

Delayed puberty is a frequent problem in clinical practice. The
most common underlying condition is self-limited DP, but other
pathological causes may underlie this condition and should
be excluded.

Distinguishing between self-limited DP and permanent HH
might be challenging. Observation is appropriate in benign
variants of puberty and in those with milder forms of delayed
puberty. Genetic testing is appropriate and may be a crucial
diagnostic step in cases of DP associated to syndromic features
or other red flags to identify IHH patients (see Figure 1).
The application of genetic testing in clinical practice for the
differentiation of the conditions of self-limited DP and GnRH
deficiency would represent a great advantage for diagnosis.

Recent technology advancement (i.e., NGS technology) is
allowing the identification of the genetic cause of self-limited
delayed puberty as well.

However, as summarized in the present work, patients with
monogenic forms of self-limited DP represent a minority of cases
and do not have clinical characteristics that allow clinicians to
distinguish them.

Furthermore, tests for pathogenicity in vitro and in vivo
and/or assessment of segregation with phenotype within pedigree
are needed to demonstrate the causal link between variants found
and self-limited DP.

For these reasons, and also for the difficult and challenging
interpretation of NGS analysis results (17), we suggest that
genetic analysis in patients with self-limited DP be limited to
research setting.

However, in the future, as knowledge of the genetic
architecture of delayed puberty will be enriched, genetic testing
could represent a useful diagnostic tool also in clinical practice.
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